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Climate prediction

• IPCC approach

– multiple-model 

ensemble 

projection 

– considerable 

uncertainty as 

measured by inter-

model difference

IPCC AR4



Climate prediction
• How might 

CLARREO help? 
– Through testing and 
improving the models:

Observation =>

model improvement =>

better prediction based 
on improved model

– How to assess the 
impact of CLARREO 
NOW?

– More generally, is it 
possible to improve the 
prediction through 
direct use of data? And 
what would be optimal 
data for this purpose?

[Huang, Leroy and 
Goody, in press, PNAS]

Fingerprinting of the longwave climate 

feedbacks [Leroy et al., 2008; Huang et al. 2010]



Could surface air temperature 

be better predicted if we knew 

TOA SW flux?

• Model prediction – testable hypothesis

• Models predict various variables, a subset of which can be 

observed.

• Can a climate theory and its prediction of a variable of 

interest be improved by testing against available observation?

blue: model

red: obs

Could the climate change 50 

years from now be better 

predicted if we knew about the 

first 20 years?



Bayesian 

Inference

( | ) ( ) ( , ) ( | ) ( )P A B P B P A B P B A P A 

Probability of event B given 

event A

Probability of 

event A given 

event B

Joint probability of events A 

and B A: Hypothesis

B: Data



Bayesian 

Inference
: hypothetic change of interest  

: hypothetic change that can be measured

: observation data - change actually measured

y

x

d

( | ) ( , | ) ( , ) ( | )P y d P x y d dx P x y P d x dx  

Probability that we would 

have observed d if the 

prediction of x was true

Probability that the 

prediction of y is true 

given data

Prerequisite: the relationship 

between x and y (here, given 

by the CMIP3 models)



Bayesian 

Inference
: hypothetic change of interest  

: hypothetic change that can be measured

: observation data - change actually measured

y

x

d

( | ) ( , | ) ( , ) ( | )P y d P x y d dx P x y P d x dx  

d (Obs. Data)

P(y|d)

(Posterior PDF)



Bayesian 

Method
: hypothetic change of interest  

: hypothetic change that can be measured

: observation data - change actually measured
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Posterior estimate

Correlation between x and y

Prior uncertainty 

in the prediction
(model sensitivity 

difference + natural 

variability)

Measurement 

error
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A “perfect model” test
• CMIP3 (IPCC AR4) 

SresA1b experiment
– One realization each 
model

– x, y, d: all linear trends

• One model 
(ncar_pcm1) arbitrarily 
chosen to represent 
observational data, 
the “truth”.

• The prediction made 
by the rest models 
then validated against 
this “truth”.

• Target prediction: 50-
year trend in the 
global mean surface 
air temperature



A “perfect model” test
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• When more and more 
data are obtained and 
used to modify the 
prior prediction 
according to the 
above equations, the 
posterior gets closer 
and closer  to the truth, 
with less and less 
uncertainty.  

• The best data type 
would provide the 
most constraint in the 
shortest observation 
time.

? 



Calculations
• Target prediction (y): 50-year trend in surface air 
temperature

• Observation data (x): 20-year trends in:
(In situ) Surface air temperature (Tas), column integrated cloud 

water and ice, total cloud amount, precipitation, precipitable water 
(PW), surface downwelling (DLR) and upwelling longwave and 
shortwave radiation, and atmospheric temperature (Ta), relative 
humidity, specific humidity (q), and geopotential height (Z) at 500, 
200 and 50 hPa levels, and

(satellite - CLARREO) Outgoing longwave radiation (OLR) and 
reflected shortwave (RS) radiation at TOA, (clear-sky) spectrally 
resolved OLR radiances, dry-pressures (Pdry) at 5.5, 10 and 14 
Km.

• Metrics
– Improvement in accuracy (D) and improvement in precision (D):
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Data 

Type

 D D

Z500 0.64 0.22 0.44

Tas 0.61 0.21 0.27

DLR 0.61 0.21 -0.47

PW 0.61 0.18 0.42

Z200 0.56 0.17 0.39

Ta500 0.53 0.15 0.44

q500 0.45 0.10 0.43

In situ
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Selection criterion: 

correlation significant at 95% 

confidence level.



Data 

Type

 D D

OLR 0.67 0.27 0.75

R995 0.67 0.23 0.44

Pdry5.5 0.64 0.22 0.42

R1600 0.60 0.18 0.34

R560 0.55 0.15 0.35

RS -0.47 0.13 0.32

R500 0.44 0.09 0.30

Satellite

R560

R995
R1600

R500



Data Type

(20-year observation)

Improvement in 

precision (D)

Tas 0.21

All in situ data 0.35

LW Radiance data only 0.44

All satellite data 0.53

The results here indicate that CLARREO measurements are 

well chosen for providing powerful constraints on the 

precision of the ensemble prediction of surface temperature 

change.

Multiple data types used together to 

improve 50-year Tas trend prediction



Strict accuracy requirement on observing systems
2
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20-yr trends x (inter-model 

difference)

d (internal 

variability)

d (WMO GCOS 

recommendations)

Tas [K / yr] 0.008 0.002 N/A

Ta [K / yr] 0.007 0.001 0.005

PW [kg m-2 / yr] 0.010 0.003 0.07

DLR [W m-2 / yr] 0.044 0.010 N/A

OLR [W m-2 / yr] 0.016 0.002 0.02

R995 [mW cm sr-1 m-2 / 

yr]

0.009 0.003 ?CLARREO?

Pdry [hPa / yr] 0.009 0.002 ?CLARREO?

 ~ 0.033 K

=> 0.04 mW cm sr-1 m-2 radiance 

accuracy (at 995 cm-1 and 280K)

=> ~10 years is required to achieve the 

trend accuracy 



Conclusions/discussions
• We present a methodology that provides constraints on 

the IPCC multi-model ensemble-based climate prediction 
by using observation data, and demonstrate that it can 
be used for selecting optimal data type for this purpose.

• 32 data types are examined for their potential for 
improving a 50-year surface air temperature trend 
prediction with data from earlier periods. 

• Among the14 data types that are identified to be of 
significant potential,

– The temperature data itself may not be the best data type for 
constraining surface air temperature prediction;

– Most constraint is provided by OLR total flux and radiances.

• Given the sample size used to quantify (x,y), 
confidence on the ranking needs to be substantiated by 
a large ensemble.



Conclusions/discussions (cont’)
• The results indicate that CLARREO measurements are 

well chosen for constraining ensemble prediction 
uncertainty and when used together may reduce the 
uncertainty in the 50-year temperature trend prediction 
by 50% in 20 years.

• Key to the improvement is the trend measurement 
accuracy, which constitutes a challenging requirement 
on most climate observing systems and is where the 
niche of CLARREO is.

• Yet to answer / improve:

– Why is, e.g., (OLR,Tas) high? 

– Gaussian assumption for P(x,y)

– All-sky radiances

– Optimal combination of data types (radiance selection)

– Applied to real data



Backup



Bayesian 

Method
: hypothetic change of interest  

: hypothetic change that can be measured

: observation data - change actually measured

y

x

d

( | ) ( , | ) ( , ) ( | )P y d P x y d dx P x y P d x dx  

2

2

2

 ~ ( , )

 ~ ( , )

 ~ ( , )

y y

x x

d

y N

x N

d N d

 

 



Prior estimate

1

1

2
| |

|

|

( )

( )

|  ~ ( , )

( )

yy yx xx dd xy

y d y d

y yx xx xy d dd

y d

y d N

d

 

  





    

    

  

Posterior estimate

Correlation between x and y

Prior uncertainty 

in the prediction
(model sensitivity 

difference + natural 

variability)

Measurement 

error



CMIP3 720ppm stabilization (sresA1b) experiment

• Source: WCRP CMIP3 multi-model data (ftp-esg.ucllnl.org)

• 24 GCMs
–Different number of runs from each GCM

–Some diagnostic variables are NOT available from some models

–Apparently wrong values in a few cases
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Climate sensitivity (50-yr tas trend) of 

CMIP3 models



OLR

surf air T P(x,y)


